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4 (Systems of) linear equations

Definition 1 (linear equation). A linear equation is an equation in which each term is
either a constant or the product of a constant and (the first power of) a single variable. If
n ∈ N, a1, a2, . . . , an, b ∈ R, and x1, x2, . . . , xn are unknowns or variables, then a linear
equation is given by

n

∑
k=1

akxk = b⇔ a1x1 + a2x2 + · · ·+ anxn = b.

The numbers a1, a2, . . . , an are called coefficients and b is the right-hand side. A solution
is an n-tuple (x1, x2, . . . , xn) ∈ Rn that fulfills the equation. If b = 0, the equation is called
homogenous otherwise inhomogenous.

Definition 2 (system of linear equations). Let m, n ∈N. A system of linear equations
with m equations and n variables is given by

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2
...

...

am,1x1 + am,2x2 + · · ·+ am,nxn = bm

,

where ai,j, bi ∈ R for i = 1, 2, . . . , m and j = 1, 2, . . . , n. A solution is an n-tuple
(x1, x2, . . . , xn) ∈ Rn that fulfills all m equations of the system simultaneously. If b1 =

b2 = · · · = bm = 0, the system is called homogenous otherwise inhomogenous.

Problem 3. Given: A system of linear equations.
Goal: Find all possible solutions given as

S =

{
(x1, x2, . . . , xn)

T ∈ Rn :
n

∑
k=1

ai,kxk = bi for all i = 1, 2, . . . , m

}
.



Definition 4 (matrix). Let m, n ∈N. A scheme
a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

am,1 am,2 . . . am,n

 ,

where ai,j ∈ R for i = 1, 2, . . . , m and j = 1, 2, . . . , n is called a matrix, more precisely an
(m× n)−matrix. Furthermore, (ai,1, ai,2, . . . , ai,n) are the rows and (a1,j, a2,j, . . . , am,j)

T

are the columns of the matrix.

Definition 5 ((extended) matrix of coefficients). If

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2
...

...

am,1x1 + am,2x2 + · · ·+ am,nxn = bm

is a system of linear equations, we call

A =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

am,1 am,2 . . . am,n


the matrix of coefficients and

(A|b) =


a1,1 a1,2 . . . a1,n b1

a2,1 a2,2 . . . a2,n b2
...

...
am,1 am,2 . . . am,n bm


the extended matrix of coefficients. We write Ax = b as an abbreviation for the system
of linear equations.

Definition 6 (simple form). An (m× n)-matrix is in simple form if

A =



∗1

∗2

∗3
. . .
∗r
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such that the entries at positions ∗i are 6= 0 for i = 1, 2, . . . , r and below the line are only 0s.

More precisely, A is in simple form if

(i) there exists a number r ∈N with 0 ≤ r ≤ m such that

• the rows with index 1, 2, . . . , r each contain an entry 6= 0;

• the rows with index r + 1, r + 2, . . . , m contain only 0s.

(ii) Let ji = min{j : ai,j 6= 0} for 1 ≤ i ≤ r. Obviously 1 ≤ ji ≤ n and we require
j1 < j2 < · · · < jr.

Note that r = 0 is possible. In this case all entries of A are 0. The entries a1,j1 , a2,j2 , . . . , ar,jr
are called pivots of A.

Proposition 7. If A is a matrix in simple form, then ji = i for i = 1, 2, . . . .r can be obtained
by rearrangement of its columns.

Theorem 8 (solution of linear systems in simple form). Let Ax = b with A in simple
form such that the pivots are in the first r columns, i.e.

(A|b) =



a1,1 b1

a2,2 b2
. . . ...

ar,r br

br+1
...

bm


with a1,1, a2,2, . . . , ar,r 6= 0.

• If bi 6= 0 for an index r + 1 ≤ i ≤ m, then S(A, b) = ∅.

• If bi = 0 for i = r + 1, r + 2, . . . , m, then S(A, b) 6= ∅ and can be computed as
follows. Set k = n− r, choose λ1, λ2, . . . , λk as parameters, and set xr+1 = λ1, xr+2 =

λ2, . . . , xn = λk. To compute x1, x2, . . . , xr begin in row r:

ar,rxr + ar,r+1λ1 + · · ·+ ar,nλk = br

⇔xr =
1

ar,r
(br − ar,r+1λ1 − · · · − ar,nλk) .

Plugging this into the (r− 1)st row we can compute xr−1 and so on.
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Definition 9 (free & bounded variables). In the situation of Theorem 8, the variables
xr+1, xr+2, . . . , xn are called free, and the variables x1, x2, . . . , xr are called bounded.

Definition 10 (elementary row transformations). Row switching (switching all ele-
ments of row i with its counterparts in row j), row multiplication (muliplying all elements
in row i with a nonzero scalar), and row addition (adding row j multiplied with a nonzero
scalar to row i) are called elementary row transformations.

Theorem 11 (row transformations do not change solutions). Let (A|b) be an aug-
mented matrix of coefficients and suppose that (A′|b′) is obtained from (A|b) by an elemen-
tary row transformation. Then S(A, b) = S(A′|b′), i.e. Ax = b and A′x = b′ have the
same set of solutions.

Theorem 12 (matrices can be transformed into simple from). For every matrix A there
is a matrix B in simple form that can be obtained from A by finitely many elementary row
transformations.

Theorem 13 (Gauss algorithm). Given a system Ax = b of linear equations.

1. If A = 0, stop.

2. Locate the first nonzero column from the left. One row has a nonzero entry in this column.
If necessary, swap this line with the first.

3. The first nonzero entry of the first row is in the first nonzero column. Using this entry,
subtract suitable multiples of the first line from the other lines to generate zero entries in
that column. This yields matrix (A′|b′).

4. If (A′|b′) is not in simple form, repeat step 3 with (A|b) = (A′|b′). Otherwise compute
r and check b′ to conclude whether (A′|b′) has solutions. If yes, compute the parametriza-
tion.

Theorem 14 (Computation of inverse matrices). The inverse of a matrix can be computed
using the algorithm of Gauss.

Theorem 15 (Invertible matrices & linear systems). Let A ∈ Rn×n. Then the following
are equivalent.

(i) A is invertible.

(ii) For every b ∈ Rn: Ax = b has a unique solution.

(iii) A has rank n.
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Theorem 16. Let A ∈ Rm×n and r = rank(A). Then

dim(kernel(A)) = dim(S(A|0)) = n− r.
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